
Shared MemoryShared Memory
ParallelizationParallelization

Thomas J. Watson Research
Center

PO Box 218

Yorktown Heights, NY 10598

OpenMPOpenMP

OutlineOutline

Local Information
What is Shared Memory Parallelization
Variable Scoping
Work Sharing
Performance Issues

What is Shared ("Symmetric")What is Shared ("Symmetric")
Memory ParallelizationMemory Parallelization

All processors can access all the memory in the
parallel system (node)

The time to access the memory may not be equal for
all processors - not necessarily a flat memory

Parallelizing on a SMP does not reduce CPU time -
it reduces wallclock time
Parallel execution is achieved by generating
threads which execute in parallel

Number of threads is (~) independent of the number o
processors

What is Shared MemoryWhat is Shared Memory
ParallelizationParallelization (continued)(continued)

Overhead for SMP parallelization is large
10's of microseconds
Size of parallel work construct must be significant
enough to overcome overhead

Runtime handling of parallel threads important
SMP parallelization is degraded by other
processes on the node - important to be
dedicated on the SMP node
Remember Amdahl's Law - Only get a speedup
on code that is parallelized

Variable ScopingVariable Scoping

Most difficult part of Shared Memory
Parallelization

What memory is Shared
What memory is Private - each processor has its
own copy

Fortran concept of Memory
Global

Shared by all routines
Local

Private to routine

Variable Scoping RulesVariable Scoping Rules

Private Variables
Thread scope only

Scalar variable that is set and then used within the
DO
An array whose subscript is constant with respect
to the PARALLEL DO and is set and then used
within the DO

Shared Variables
Everything Else

Shared is the default (for ALL variables)

Fortran vs SMP ScopingFortran vs SMP Scoping

Whenever a Fortran GLOBAL variable
is scoped PRIVATE or when a Fortran
LOCAL variable is scoped SHARED
problems arise

Variable passed into a routine scoped
private - FIRST Value getting and LAST
value setting
COMMON block variable within a called
routine needs to be scoped private

OpenMP DirectivesOpenMP Directives

http://www.openmp.org
Comment line directives for

Scoping Data
Specifying Work Load
Synchronization of threads

Function calls for obtaining information
about threads

OpenMP DirectivesOpenMP Directives
Scoping Variables

Default is SHARED
Can be set to NONE or PRIVATE

Nothing like AUTOSCOPE - user
responsible for scoping anything that is
contrary to default
Scoping cannot be done within a
subroutine called from the parallel DO
loop - except with THREADPRIVATE

OpenMP DirectivesOpenMP Directives

!$OMP PARALLEL / !$OMP END
PARALLEL

"Fork" and "join"
Indicate a parallel region for each thread
to execute - must scope all variables
within region

OpenMP DirectivesOpenMP Directives
!$OMP PARALLEL DO / !$OMP END
PARALLEL DO
Fork and join, plus work sharing

Indicate a parallel do for all threads to
shared in work - must scope all variables
within region - Can specify Worksharing

OpenMP DirectivesOpenMP Directives

!$OMP DO / !$OMP END DO
Work sharing (within a parallel region)
Note the optional "END DO"
Indicate a parallel do for all thread to
shared in work - May Scope variables
Can specify Worksharing

Variable ScopingVariable Scoping

dimension a(1000000),B(1000000),c(1000000)
read *,n
sum = 0.0

call random (b)
call random (c)

!$OMP PARALLEL DO
!$OMP&PRIVATE (i)
!$OMP&SHARED (a,b,n)
!$OMP&REDUCTION (+:sum)

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sum = sum + a(i)

Enddo
!$OMP PARALLEL ENDDO

end

Reduction: Note that
reduction variable
cannot be an array!

dimension a(1000000),B(1000000),c(1000000)
read *,n
sum = 0.0

call random (b)
call random (c)

!$OMP PARALLEL
!$OMP PRIVATE (i,sump)
!$OMP SHARED (a,b,n,c,sum)

sump = 0.0
!$OMP DO

do i=1,n
a(i) = sqrt(b(i)**2+c(i)**2)
sump = sump + a(i)

enddo
!$OMP CRITICAL

sum = sum + sump
!$OMP ENDCRITICAL
!$OMP END PARALLEL

end

Another ("Traditional") way
of performing a reduction

Variable ScopingVariable Scoping

Variable ScopingVariable Scoping

Each processor needs
a separate copy of j,i,c
everything else is
Shared

subroutine example4(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer n,i
real*8 sum

!$OMP PARALLEL DO
!$OMP PRIVATE (j,i,c)
!$OMP SHARED (a,b,m,n)

do j=1,m
do i=2,n-1
c(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+c(i)**2)
enddo

enddo
end

What about c?
c(1) and c(n)?

Variable ScopingVariable Scoping

Need First Value of c

subroutine example4(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer n,i
real*8 sum

!$OMP PARALLEL DO
!$OMP PRIVATE (j,i)
!$OMP SHARED (a,b,m,n)
!$OMP FIRSTPRIVATE (c)

do j=1,m
do i=2,n-1
c(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+c(i)**2)
enddo

enddo
end

Master copies it's
c array to all threads
prior to DO loop

FIRSTPRIVATE entails data
motion (copying).

Variable ScopingVariable Scoping

Need First Value of c

User copies what part of
c is needed to all threads
prior to DO loop

subroutine example5(n,m,a,b,c)
real*8a(100,100),B(100,100),c(100)
real*8 cc(100)
integer m,n,i
real*8 sum

!$OMP PARALLEL
!$OMP PRIVATE (j,i,cc)
!$OMP SHARED (a,b,m,n)

cc(1) = c(1)
cc(n) = c(n)

!$OMP DO
do j=1,m
do i=2,n-1

cc(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n

a(i,j) = sqrt(b(i,j)**2+cc(i)**2)
enddo
enddo

!$OMP END DO
!$OMP END PARALLEL

end

Variable ScopingVariable Scoping
What about last value
of c?

Each thread performs
final copy.

Could use "LAST
PRIVATE"

!$OMP PARALLEL
!$OMP PRIVATE (j,i)

!$OMP SHARED (a,b,m,n)
cc(1) = c(1)
cc(n) = c(n)

!$OMP DO
do j=1,m
do i=2,n-1
cc(i) = sqrt(1.0+b(i,j)**2)
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)
enddo

enddo
!$OMP END DO

if(j.eq.m+1)then
do i=1,n
c(i) = cc(i)

enddo
endif

!$OMP END PARALLEL

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer m,n

!$OMP PARALLEL DO
!$OMP PRIVATE (j)
!$OMP SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)

enddo
end

subroutine doit(j,n,a,b)
real*8 a(100,100),B(100,100)
COMMON cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

Calling an External from a ParallelCalling an External from a Parallel
LoopLoop

subroutine example5(n,m,a,b,c)
real*8 a(100,100),B(100,100),c(100)
integer m,n

!$OMP PARALLEL DO
!$OMP PRIVATE (j)
!$OMP SHARED (a,b,m,n)

do j=1,m
call doit(j,n,a,b)

enddo
end

subroutine doit(j,n,a,b)
real*8 a(100,100),B(100,100)

!$OMP THREADPRIVATE (/BCOM/)
COMMON/BCOM/ cc(100)
do i=2,n-1
IF(a(i,j).gt.SIN(b(i,j)))THEN

cc(i) = sqrt(1.0+b(i,j)**2)
ENDIF
enddo
do i=1,n
a(i,j) = sqrt(b(i,j)**2+cc(i)**2)

enddo
end

Calling an External from a ParallelCalling an External from a Parallel
LoopLoop

Blank Common cannot appear on THREADPRIVATE
How about first value setting???

Not in xlf Version 6.1
... Called "threadcommon"

Work Sharing DirectivesWork Sharing Directives
SCHEDULE (type,n)

Runtime
Scheduling is controlled by runtime
environment variable

OMP_SCHEDULE
XLSMPOPTS on xlf Version 6.1

(Static,n)
Iterations are divided into chunks and pieces
are statically assigned to threads in a
round-robin fashion (Default n is iteration
count/parthds)

(Not in xlf 6.1)

Work Sharing DirectivesWork Sharing Directives

SCHEDULE
(Dynamic,n)

Work is divided into chunks of size n. As each
thread finishes a chunk it dynamically obtains
the next set of iterations. (default of n is 1)

(Guided,n)
Dynamic with chunksize starting at
iterations/parthds, then exponentially
decreasing to n. (default of n is 1)

Tradeoff Load Balancing andTradeoff Load Balancing and
Reduced OverheadReduced Overhead

The larger the size (GRANULARITY) of
the piece of work, the lower the overall
thread overhead.
The smaller the size (GRANULARITY)
of the piece of work,the better the
dynamically scheduled load balancing

OpenMP for COpenMP for C

Specification 1.0, October 1998
Same functionality as OpenMP for FORTRAN
Differences in syntax:

#pragma omp parallel
#pragma omp for

Differences in variable scoping:
variables "visible" when #pragma omp parallel
encountered are shared by default
static variables declared within a parallel region are also
shared
heap allocated memory (malloc) is shared (but pointer
can be private)
automatic storage declared within a parallel region is
private (ie, on the stack)

What About Automatic?What About Automatic?

xlf has a very good automatic
parallelizer that might do a good job on
a User's program.

When applying it across an entire
program, some loops may slow down,
some may speed up - you should be
prepared to time individual loops before
and after and then selectively parallelize
what you want

What About Automatic?What About Automatic?

xlf has a very good automatic
parallelizer that might do a good job on
a User's program.

Runtime checking of overhead controlled
by runtime environment variable

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Iterations

500

1000

1500

2000

B
an

dw
id

th
M

B
/S

ec

Copy SEQ
Copy SMP
Copy THR
Copy SMPO

Stream Rates for Scale

Runtime
Check Not
Low
enough

Winterhawk 2-ProcessorWinterhawk 2-Processor

Runtime Enviroment VarsRuntime Enviroment Vars

Some will probably change with Version 7.1 - OpenMP
standard

XLSMPOPTS
parthreshold = num

specifies time in milliseconds below which the loop will
run in serial

seqthreshold = num
specifies time beyond which previous sequential loop will
be run in parallel

profilefreq=num
frequency with which loop should be analyzed
= 0 All profiling turned off

Runtime Management of ThreadsRuntime Management of Threads

When the system encounters the first
Parallelized DO loop the Master
generates the worker threads and
begins working on a chunk of the
Parallel DO loop
After the first Parallel DO loop is
executed, all the worker threads are put
to sleep - regardless of the spin
Environment variable

Runtime Management of ThreadsRuntime Management of Threads
(continued)(continued)

When the next DO loop is encountered, the
Master wakes up a first worker thread, the
Master continues to work on the parallel
loop. The first worker thread wakes up the
second worker thread and starts to work on
the parallel loop. The Master may have
already started a second piece of work.
The second thread wakes up the third,

Runtime Enviroment VarsRuntime Enviroment Vars
Some will probably change with Version
7.1 - OpenMP standard

XLSMPOPTS
parthds=num

default - number of processors
stack=num

default - 4194304
spins=num (Only for locks)

default - 100
yields=num (Only for locks)

default - 10

Runtime Management of ThreadsRuntime Management of Threads

Supply a runtime environment variable to
specify that the threads should be put in a
spin state rather than put to sleep.
Environment variable:
SPINLOOPTIME=5000

"spinwait"
This will saturate the CPU, not good if the
node is timeshared
This will effectively reduce the overhead of
threads joining the work section

Full OpenMP 1.0:
C for AIX 5.0
November, 1999

XLF 7.1
March, 2000

Synchronization and scheduling are
comparable to SGI and Sun
More concern with load balance and locality
USE new libxlsmp.a
Old version has poor performance

SummarySummary

